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Introduction. Write {
�
2

2m

(
∂
∂x

)2 + i�∂
∂t

}
ψ(x, t) = 0 (1)

to describe the 1-dimensional quantum motion of a mass point m. Assume
ψ(x, 0) to have the form

ψ(x, 0) =
[

1
σ
√

2π

] 1
2

exp
{
− 1

4

[
x−a

σ

]2} (2)

where a and σ are prescribed constants. Then

P (x, 0) ≡ |ψ(x, 0)|2 = 1
σ
√

2π
exp

{
− 1

2

[
x−a

σ

]2} (3)

is a normalized Gaussian: ∫ +∞

−∞
P (x, 0) dx = 1

The evolved wave function can, as is well known,1 be described

ψ(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4
(x−a)2

σ2[1+i(t/τ)]

}
(4)

provided we set the “natural time” parameter

τ = 2mσ2/� (5)

This amounts, by the way, to setting 2m = �τ/σ2, in which notation the

1 See “Gaussian wavepackets” (), page 4.
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Schrödinger equation (1) assumes the simpler appearance

{
σ2

(
∂
∂x

)2 + iτ ∂
∂t

}
ψ(x, t) = 0 (6)

Mathematica is quick to verify that (4) does in fact describe a solution of (6).
From (6) we obtain

P (x, t) ≡ |ψ(x, t)|2 = 1
σ(t)

√
2π

exp
{
− 1

2

[
x−a
σ(t)

]2} (7.1)

with
σ(t) ≡ σ

√
1 + (t/τ)2 (7.2)

Equations (7) describe a dispersing Gaussian:

〈x〉 = a

∆x ≡
√
〈x2〉 − 〈x〉2 = σ(t)

}
: t > 0 (8)

That we become progressively more and more uncertain where measurement
would show the free particle to reside has from the outset be recognized to
be one of the most characteristic features of quantum theory. I turn now to
discussion intended to underscore the fact that the point at issue retains its
validity even after abandonment of the the assumption that P (x, 0) is Gaussian.

Free particle eigenfunctions can be described

ψp(x) ≡ 1√
h

e
i
�

px (9.1)

and to describe the temporal evolution of such a function we have

ψp(x, t) ≡ 1√
h

e
i
�
[px−(p2/2m)t] (9.2)

The Gaussian wavepacket (2) can be displayed as a weighted superposition of
such eigenfunctions:

[
1

σ
√

2π

] 1
2

exp
{
− 1

4

[
x−a

σ

]2} =
∫ +∞

−∞
ϕ(p) 1√

h
e

i
�

px dp

with

ϕ(p) =
∫ +∞

−∞

[
1

σ
√

2π

] 1
2

exp
{
− 1

4

[
x−a

σ

]2} 1√
h

e−
i
�

px dx

=
[

1
λ
√

2π

] 1
2

exp
{
− 1

4

[
p
λ

]2}
e−

i
�

ap (10.1)

where
λ ≡ �/2σ
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The effect of launching such an eigenfunction can be described∫ +∞

−∞
ϕ(p) 1√

h
e

i
�

px dp �−→
∫ +∞

−∞
ϕ(p) 1√

h
e

i
�
[px−(p2/2m)t] dp (10.2)

and is found by calculation to give back (4).

Look now, by way of comparison, to the case2

ψ(x, 0) =




1√
2b

: x2 < b2

0 : x2 � b2

(11)

In this instance P (x, 0) ≡ |ψ(x, 0)|2 is constant on the interval −b � x � +b
and vanishes elsewhere. The argument that gave (10.1) now gives

ϕ(p) =
∫ +b

−b

1√
2bh

e−
i
�

px dx

=
√

�

p
√

πb
sin bp

�
(12)

As a check on the accuracy of this weight function we compute

ψ(x, 0) =
∫ +∞

−∞

√
�

p
√

πb
sin bp

�
· 1√

h
e

i
�

px dp

= 1√
2b

· 1
2

{
ε(x + b) − ε(x − b)

}
where ε(x) ≡

{+1 : x > 0
0 : x = 0

−1 : x < 0

= 1√
2b

·
{

θ(x + b) − θ(x − b)
}

where θ(x) ≡
{ 1 : x > 0

1
2 : x = 0
0 : x < 0

= 1√
2b

· θ(b2 − x2)

This result3 is easily seen to be in precise agreement with (11). Looking to the
temporal evolution of such a “box packet” we undertake to compute

ψ(x, t) =
∫ +∞

−∞

√
�

p
√

πb
sin bp

�

· 1√
h

{
cos

[
1
�

(
px − p2

2m t
)]

+ i sin
[

1
�

(
px − p2

2m t
)]}

dp

Mathematica supplies

= F (x, t) + iG(x, t) (13)

2 I owe my special interest in this case to a conversation with David Griffiths
(August ).

3 The step functions (or “switches”) ε(x) and θ(x) are known to Mathematica
as Sign[x] and UnitStep[x], respectively. For review of their properties see
Chapter 8 in J. Spanier & K. B. Oldham, An Atlas of Functions ().
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where F (x, t) and G(x, t) are sums of “generalized hypergeometric functions”
multiplied by algebraic functions and switches (but so complicated that it would
serve no useful purpose to write them out). We construct

P (x, t) ≡ |ψ(x, t)|2 = F 2(x, t) + G2(x, t) (14)

and note that, according to Mathematica, F (x, t) & G(x, t) are—non-obviously
but not surprisingly—both even functions of x:

F (x, t) = F (−x, t) and G(x, t) = G(−x, t)

So P (x, t) is even, from which it follows immediately that

〈xodd 〉t =
∫ +∞

−∞
xoddP (x, t) dx = 0 : all t

From P (x, 0) = 1
2b θ(b2 − x2) we find that initially

〈x2n 〉0 = b2n

n+1 : n = 0, 1, 2, . . . (15.1)

But Mathematica seems to be powerless to compute

〈x2n 〉t ≡ 2
∫ ∞

0

x2nP (x, t) dx (15.2)

except numerically, and even with the numerical integration it has to struggle
. . . for reasons that I will undertake later to explain.

As it happens, there exists an illuminating general line of argument—which
I digress now to review—that enables one to circumvent (or at least to reduce
the sting of) difficulties of the sort just encountered. I have described elsewhere4

the sense in which quantum mechanics can be looked upon as a “theory of
interactive moments.” Within that formalism it becomes the business of the
Hamiltonian operator to set the system-specific design of the coupled “moment
equations” that lie at the analytic heart of the theory. I have shown in particular
that in the case H = 1

2mp2 one has

d
dt 〈p〉 = 0
d
dt 〈x〉 = 1

m 〈p〉

d
dt 〈p

2〉 = 0
d
dt 〈xp + px〉 = 2

m 〈p2〉
d
dt 〈x

2〉 = 1
m 〈xp + px〉

...




(16)

4 See Advanced Quantum Topics (), Chapter 2 (“Weyl Transform & the
Phase Space Formalism”), pages 51–60.
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from which it follows that

〈p〉t = p0

〈x〉t = x0 + 1
mp0 t

〈p2〉t = ℘2

〈xp + px〉t = s + 2
m℘2 t

〈x2〉t = ξ2 + 1
mst + 1

m2 ℘2t2

...




(17)

Here p0, x0, ℘2, s and ξ2 are constants of evident physical dimension. From

p0 = 〈p〉0 =
∫

ψ∗(x, 0) p ψ(x, 0) dx

x0 = 〈x〉0 =
∫

ψ∗(x, 0) x ψ(x, 0) dx

℘2 = 〈p2〉0 =
∫

ψ∗(x, 0) p2 ψ(x, 0) dx

s = 〈xp + px〉0 =
∫

ψ∗(x, 0) (xp + px) ψ(x, 0) dx

ξ2 = 〈x2〉0 =
∫

ψ∗(x, 0) x2 ψ(x, 0) dx




(18)

we see that they can be considered to derive their numerical values from the
prescribed structure of ψ(x, 0). One has to evaluate only initial integrals to
evaluate the constants, and can then use (17) to obtain descriptions of the
evolved moments: one is thus spared the tedium of trying to evaluate evolved
integrals . . .which is one of the advantages afforded by the program. Another is
that one can use it to draw certain general conclusions. Observe, for example,
that equations (17) entail

(∆x)2t ≡ 〈x2〉t − 〈x〉2t = α + β(t − t0)
2 (19.1)

with

α = (ξ2 − x2
0) −

(s − 2x0p0)
2

4(℘2 − p2
0)

β =
℘2 − p2

0

m2

t0 = − s − 2x0p0

2(℘2 − p2
0)




(19.2)
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If, in particular, ψ(x, 0) is Gaussian, as described by (2), we compute

p0 = 0
x0 = a

℘2 =
(

�

2σ

)
2

s = 0

ξ2 = a2 + σ2

from which it follows in particular that

α = σ2

β =
(

�

2mσ

)
2

t0 = 0

whence
(∆x)2t = σ2 +

(
�

2mσ

)
2t2

= σ2
[
1 + (t · �/2mσ2)2

]
We have recovered precisely (7.2), but by an argument which underscores the
important fact that the hyperbolic growth of (∆x)t is not special to Gaussians:
it pertains to the free-body motion of all wavepackets for which the relevant
initial moments are well-defined.

Look back again, in this light, to the case (11) of the boxpacket

ψ(x, 0) = 1√
2b

·
{

θ(x + b) − θ(x − b)
}

We know already that

x0 ≡ 〈x〉0 = 0 and ξ2 ≡ 〈x2〉0 = 1
3b2

That
p0 ≡ 〈p〉0 = 0

can be argued in several ways: we might write

p0 = 1
2b

∫ {
θ(x + b) − θ(x − b)

}
�

i
∂
∂x

{
θ(x + b) − θ(x − b)

}
dx

= 1
2b

�

i

∫ {
θ(x + b) − θ(x − b)

}{
δ(x + b) − δ(x − b)

}
dx

= 1
2b

�

i

{
θ(0) − θ(−2b) − θ(+2b) + θ(0)

}
= 1

2b
�

i

{
1
2 − 0 − 1 + 1

2

}
= 0

though that line of argument seems precariously formal. Alternatively, we might
appeal to the general observation that if ψ(x) is real-valued then∫

ψ(x)�

i
∂
∂xψ(x) dx

{
is transparently imaginary
but must be real, so vanishes
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Or we could elect to work in the momentum representation, from (12):

ϕ(p) =
√

�

p
√

πb
sin bp

�
, which is an even real-valued function of p

Direct calculation confirms that∫ +∞

−∞
ϕ(p) p0ϕ(p) dp = 1

and that

p0 =
∫ +∞

−∞
ϕ(p) p1ϕ(p) dp = 0

But when we look by this means to ℘2 ≡ 〈p2〉0 we are informed that

℘2 =
∫ +∞

−∞
ϕ(p) p2ϕ(p) dp = ∞ (does not converge)

Argument in the x-representation is more formal

℘2 = −�
2

2b

∫ {
θ(x + b) − θ(x − b)

}{
δ

′
(x + b) − δ

′
(x − b)

}
dx

= +�
2

2b

∫ {
δ(x + b) − δ(x − b)

}{
δ(x + b) − δ(x − b)

}
dx

= +�
2

2b

{
δ(0) − δ(−2b) − δ(+2b) + δ(0)

}
= +�

2

2b

{
∞− 0 − 0 + ∞

}
: undefined

and therefore less convincing, but appears to lead to the same conclusion. Look
finally to the value of s ≡ 〈xp + px〉0 = 〈2px + i�I〉0 = 2〈px〉0 + i�. Working in
the momentum representation we have

s = i� + 2
∫ +∞

−∞
ϕ(p) p

(
− �

i
∂
∂p

)
ϕ(p) dp = i� − i� = 0

which—arguing as before—we might consider to have been forced by the reality
of ϕ(p). Returning with the information now in hand to (19.2) we find

α = ( 1
3b2 − 02) − (0 − 2 · 0 · 0)2

4(∞− 02)
= 1

3b2

β = ∞− 02

m2
= ∞

t0 = −0 − 2 · 0 · 0
2(∞− 02)

= 0

from which it would appear (by (19.1)) to follow

(∆x)2t = 1
3b2 + ∞ · t2 =

{
1
3b2 : t = 0
∞ : t > 0

(20)



8 Do boxed wavepackets become flat?

-3 -2 -1 1 2 3

1

Figure 1: Comparative display of theGaussian distribution G(x, σ)
and the Lorentzian distribution L(x, a). To facilitate the comparison
I have set σ = 1/

√
π and a = 1/π so as to achieve Gmax = Lmax = 1.

The Lorentzian distribution is seen to have a relatively sharp central
peak but relatively broad shoulders. It is, in Richard Crandall’s
despairing opinion, “too fat”—so fat that 〈x2〉 = ∞.

Figure 2: A Lorentzian distribution falls to half of its maximal
value 1/aπ at x = ±a . . .which the superimposed boxes are intended
to illustrate: each box stands half as high as its associated curve.

That (20) describes a situation which is not so bizarre as it might at first
appear is readily established by example. Let G(x;σ) be Gaussian (or “normal”)
and let L(x, a) describe what physicists call a Lorentzian (and mathematicians
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call a Cauchy) distribution:5

G(x, σ) = 1
σ
√

π
e−(x/σ)2

L(x; a) = 1
aπ

1
1+(x/a)2

Both distributions functions are even, so in both cases 〈xodd〉 = 0. The normal
distribution is well known to possess even moments of all orders, while if we
look to

〈xodd〉Lorentz ≡ lim
k↑∞

∫ +k

−k

xevenL(x; a) dx

we discover that the even-order moments of the Lorentz distribution are (except
for the moment of order zero) all infinite—this even though graphs the two
distributions (Figure 1) appear to have pretty much the same shape. Now
construct the distribution

W (x;σ, a; ε) ≡ (1 − ε)G(x, σ) + εL(x; a)

and look in particular to the 2nd moment of that distribution:

〈x2〉ε ≡ lim
k↑∞

∫ +k

−k

x2W (x;σ, a; ε) dx

It is evident from preceding remarks that

〈x2〉ε =
{

1
2a : ε = 0
∞ : ε �= 0

which provides a simple instance of the phenomenon encountered at (20). When
〈x2〉 is not available—as, even in simple situations, it sometimes isn’t!—one
must look to some other device to describe the “width” of a distribution. In
the Lorentzian case it is natural to look to (say) the distance between the points
at which L(x, a) = 1

2 (maximal value), which (by easy calculation: see Figure 2)
would be to take

Lorentzian “width” = 2a

We are, however, destined to confront a case in which those “half-max points”
are not easily located, and can readily imagine cases in which there are more
than two of them . . . or none. There appears to be no universally available
natural descriptor of “distribution width.”

We encountered at (20) a situation that, if not “bizarre,” is nevertheless
unprecedented in my experience, and is the fruit of a non-standard line of
argument. Can it be illuminated by direct analysis of 〈x2〉? I have described at

5 For review of the basic properties of Lorentzian distribution functions, see
pages 415–417 in Chapter 7 of principles of classical electrodynamics
(/).
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the construction of functions F (x, t; b, m, �) and G(x, t; b, m, �) from which, at
(14), was assembled the distribution P (x, t; b, m, �) that in time t evolves from
an initially box-like wavepacket:

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

Figure 3: Initial probability distribution Pbox(x, 0) = |ψbox(x, 0)|2
in the case b = 1.

Confining our explicit attention henceforth to the illustrative case

b = m = � = 1

we find6 that Pbox(x, t), thus constructed, has the complicated structure

P (x, t) = 1
288t3

[
−6t

√
(1−x)2ε(1−x)HypergeometricPFQ

({
3
4 ,

{
1
2 , 5

4

}
,− (1−x)4

16t2

)
+ three similar terms

]2

+
[

similar mess
]2

(21)

One might suppose that a graph of P (x, 0) would reproduce Figure 3, but
Mathematica refuses to draw such a graph, claiming that it has encountered
indeterminate expressions and complex singularities. That it has a hard time
at small times is clear from Figure 4. By t = 0.005 Mathematica is willing—if
given enough time—to draw (Figure 5) at least the central part of P (x, 0.005),
but at about x ≈ 0.4 begins to encounter wild fluctuations and to bog down.
As t becomes progressively larger Mathematica finds it progressively easier to
plot P (x, t), but—see Figures 6, 7 & 8—always displays, on left and right,
twin regions of wild fluctuation. The twins become progressively more remote,
but appear to be invariably separated by the length of the initial box. I have
made no attempt to account theoretically for those experimental observations,
partly because such an effort would require one to dig deeply into the intricacies
of (21) but mainly because a separate line of argument (see below) suggests
that the twinned fluctuations in question are spurious—an artifact created by
Mathematica itself.

6 I urge my reader to turn on Mathematica and prepare actually to do the
calculations to which I allude in the text.
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0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

Figure 4: Graph—derived from (21)—of P (0, t) at short times.
As t ↓ 0 the oscillations become faster and faster. At times t > 0.25
the central value P (0, t) of the distribution drops “exponentially” to
zero.

0.05 0.1 0.15 0.2 0.25 0.3

0.44

0.46

0.48

0.52

0.54

Figure 5: Central portion of P (x, t) at time t = 0.005. The curve
is seen to dither about its initial value P (x, 0) = 1

2 . If extended to
slightly larger values of x the graph would show wild fluctuations.
One the interval −0.3 � x � 0 one encounters the mirror image of
the curve shown.
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-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

Figure 6: Central portion of the evolved distribution P (x, 0.5),
superimposed upon a graph of the original distribution P (x, 0).

-7.5 -5 -2.5 2.5 5 7.5

0.01

0.02

0.03

0.04

0.05

0.06

Figure 7: Extended (and much magnified) version of the preceding
figure, showing complications in the neighborhoods of x = ±5 and
x = ±7. Note that 7 − 5 = 2, the width of the original packet. For
x > 8 the chaotic oscillations settle down, and the curve becomes
gently undulatory again.
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2 4 6 8 10

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

Figure 8: Right half of a graph of P (x, t) drawn at the later time
t = 1.0. Note the high magnification, and that while the spikes
have shifted to the right during the last half second they retain
their former separation. I cannot—have not really attempted—
to account analytically for the fact that these trends appear, on
numerical/graphical evidence, to be persistent.

The ψ(x, t) that evolves from ψ(x, 0) can, in principle, be described

ψ(x, t) =
∫ +∞

−∞
K(x, t; y, 0)ψ(y, 0) dy

where K(x, t; y, 0) is the propagator . . .which, as is well known, is in the present
instance given by

K(x, t; y, 0) =
√

m
i2π�t exp

{
i
�

(x−y)2

t

}

We expect therefore to have

ψbox(x, t) =
∫ +∞

−∞
K(x, t; y, 0)ψbox(y, 0) dy

=
√

m
i2π�t

1
2b

∫ +b

−b

exp
{

i
�

(x−y)2

t

}
dy

Again (at this point, rather than later) setting b = m = � = 1, we present the
integral to Mathematica, who (with some coaxing) supplies

= i 1
2
√

2

{
Erfi

[
(−)

1
4 (x − 1)√

2t

]

− Erfi

[
(−)

1
4 (x + 1)√

2t

]}
(22)
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We now use the command ComplexExpand[ % ] to resolve this result into its
real and imaginary parts. After assuring Mathematica that we understand t to
be a positive real number we obtain

ψbox(x, t) = F̃ (x, t) + iG̃(x, t)

where

F̃ (x, t) = − 1
2
√

2

{
Im

(
Erfi

[
(−)

1
4 (x − 1)√

2t

])
− Im

(
Erfi

[
(−)

1
4 (x + 1)√

2t

])}

G̃(x, t) = 1
2
√

2

{
Re

(
Erfi

[
(−)

1
4 (x − 1)√

2t

])
− Re

(
Erfi

[
(−)

1
4 (x + 1)√

2t

])}

may look to us like paraphrases of the question, but are evidently understood
by Mathematica to be answers. The functions F̃ and G̃ should be identical
to the F and G encountered at (13) on page 3, but wear tildes to emphasize
that they have been assembled now not from HypergeometricPFQ functions but
from the so-called “imaginary error function”

erfi(z) ≡ erf(iz)
i

where erf(z) ≡ 2√
π

∫ z

0

e−t2 dt

Finally we ask Mathematica to construct

P̃ (x, t) = F̃ 2(x, t) + G̃2(x, t)

which is a sum of six terms that it would serve no useful purpose to write out in
detail. Possibly Euler, if presented with TEX’d renditions of P (x, t) and P̃ (x, t),
would recognize that they provide alternative descriptions of the same function,
but I do not know off hand how to establish the point . . . except to remark that
if one uses P̃ (x, t) to reconstruct the information displayed in Figure 5 one
finds—see Figure 9—that the agreement is precise. The important point is
that . . .

Mathematica appears to find it easier to work with P̃ (x, t): see Figure 10,
which Mathematica refused to draw when asked to work with P (x, t).

Experimental calculations such as the one that produced Figure 11 lead
me to think that P̃ (x, t) is “easier” to work with because computationally more
stable, and that the “regions of wild fluctuation” that have been seen to bedevil
work based upon P (x, t) are computational artifacts—not real.

So complicated is the evolved box packet that integrals of the form

〈x2〉t =
∫ +∞

−∞
x2P (x, t) dx

must be done numerically, and if—which it is my purpose to demonstrate—it
is indeed the case that 〈x2〉t = ∞ then they cannot be done at all: one must be
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Figure 9: Graph of P̃ (x, .005), superimposed upon the graph of
P (x, .005) that was presented as Figure 5. The agreement is so
precise that the underlying graph cannot be seen.

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

Figure 10: Extended graph of P̃ (x, .005), superimposed upon a
graph of the initial Pbox(x, 0). Mathematica was unable to produce
such a figure when asked to work with P (x, .005). The figure provides
an informative and convincing account of the initial deformation of
the evolving wavepacket.



16 Do boxed wavepackets become flat?
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Figure 11: Graph of P̃ (x, 1), superimposed upon the graph of
P (x, 1) that was presented as Figure 8. The superimposed curve
shows none of the wild fluctuation to which P (x, 1) has been seen
to be prone, and which I am on this evidence inclined to dismiss as
a computational artifact. At points remote from the chaotic regions
the agreement is precise.

content to gather evidence that, for every t > 0,

W (k, t) ≡
∫ +k

−k

x2P (x, t) dx = 2
∫ k

0

x2P (x, t) dx

increases without bound: limk↑∞ W (k, t) = ∞. The integral is, however, difficult
or impossible to evaluate if k lies on the far side of a “chaotic region.” I propose,
therefore, to study the better-behaved function

W̃ (k, t) ≡ 2
∫ k

0

x2P̃ (x, t) dx

with the objective of answering this question:

Is it true that, for all t > 0, W̃ (k, t)
grows without bound as k ↑ ∞? (23)

The simple command

Plot[Evaluate[NIntegrate[x2P̃ (x, 1), {x, 0, k}], {k, 0, 30}]];
carries with it an enormous computational burden, but Mathematica, laboring
uncomplainingly for several hours on my 400 MHz PowerMac G3, did at last
manage to produce Figure 12, which I interpret to comprise soft evidence that
(23) is (at least in the case t = 1) to be answered in the affirmative. Numerical
methods are, however, incapable-in-principle of supplying compelling evidence,
for
• one cannot carry k “all the way to ∞”
• one cannot consider all values of t.
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Figure 12: Graph of 1
2W̃ (k, 1) on the interval 0 � k � 30, produced

by laborious numerical intergration. It becomes plausible on this
evidence to conjecture that limk↑∞ W̃ (k, 1) = ∞.

We have no option but to dig deep enough into the function theory to develop
the asymptotics of P̃ (x, t).

Bringing (−)
1
4 = 1√

2
(1 + i) to the definitions of F̃ and G̃ that appear on

page 14 we have

F̃ (x, t) = − 1
2
√

2

{
Im

(
Erfi

[
u + iu

])
− Im

(
Erfi

[
v + iv

])}

G̃(x, t) = 1
2
√

2

{
Re

(
Erfi

[
u + iu

])
− Re

(
Erfi

[
v + iv

])}

with
u ≡ x − 1

2
√

t
and v ≡ x + 1

2
√

t


